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Abstract 

In this work, we derive a convolution-type Voltera integral equation for singular 
nonlinear equation and use the Schauder-Tychonoff fixed point theorem to proof 
existence and uniqueness of a fixed point of the resulting operator. 

1. Introduction 

This work is an improvement on existing existence and uniqueness 
results for positive radial solutions of the nonlinear Poisson equation 

( ) ,0=+∆ ugu  

having non-smooth nonlinearity g through equivalent ordinary differential 
equation 

( ),2

2
ugdr

du
r
a

dr
ud −=+   (1) 
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,22
2

2
1 nxxxr +++= …   (2) 

( ).2,1 ≥−= nna   (3) 

Assuming that the nonlinearity RR →:g  is a continuous function 

satisfying the following conditions: 

(H1) ( ) ,0,0 ≠ξ>ξξg  

(H2) ( ) ,00 =g  

(H3) ( ) ,0,0 2 ∞<<ξ≤ξξ≤ kkg  

we will prove that there exists a unique positive decreasing solution to 
the Poisson equation. This constitutes an improvement to earlier works, 
where g is required to be differentiable. In [1], [6], and [13], continuity of 
g is used for only existence for boundary value problems; while in [12], 

1Cg ∈  is assumed for the uniqueness of the following initial value 

problems: 

 ( ),2

2
ugdr

du
r
a

dr
ud −=+  

[ )( ) ( ) ,0,,0,0 1 ≥∞∞∈ rCCg ∩  

( ) ,0 α=u   (4) 

  ( ) .00 =′u   (5) 

In the current analysis, we relaxed the smoothness assumption on the 
nonlinearity g; as is observed in conditions (H1)-(H3). Our uniqueness 
result is significant in the sense that, we do not impose any smoothness 
assumption on the nonlinearity g. We gave illustrative example to which 
our result applies, in the last section of this paper. 

Our existence result is based on an application of the Schauder-
Tychonoff theorem stated below (see, for example, Corduneanu [4], 
O’regan [11]). 
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Theorem 1.1 (Schauder-Tychonoff). Let E be a locally convex 
Hausdorff space and let T be a continuous mapping from a convex subset 

EK ⊂  into E such that ( ) ,KAKT ⊂⊂  with A compact. Then there 
exists a fixed point for T. 

In the sequel, we shall make use of the following spaces defined 
below: 

Definition 1.1 (Function spaces). The space of all continuous         
real-valued functions from R  into R  is denoted by ( ),, RRC  and the 
restriction of elements of ( )RR,C  to the interval [ ]τ,0  is denoted by 

[ ]( ),,,0 RτC  while 0C  denotes the space of functions ( )tu  in ( )RR,C  
satisfying ( ) .0lim =∞→ tut  

2. Preliminaries 

Proposition 2.1. Any positive solution to the initial value problems 
(1), (4), and (5) has its only extremum at the origin for all [ ).,0 ∞∈r  

Proof. Multiply (1) by ( )1, ≥∈ aara N  to obtain ( ) ( )ugrur aa −=′′  
which, on integration, yields 

( )( ) σσσ−=′ ∫ dugur ara
0

 

( )
( )( )

.0
a

ar

r

dug
ru

σσσ
−=′⇒
∫

  (6) 

Setting ( )( ) ( )rrug ρ=  for some function ,ρ  (6) becomes ( ) =′ ru  

( )
.0

a

ar

r

dσσρσ
−
∫

 Since ,0≥ar  by the mean value theorem, we have for 

some ( )r<θ<θ 0  

( ) ,1+
θρ−=′ a

ru   (7) 
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so that ( ) 00 =′u  and since ,0≥r  we have that the sign of ( )ru′  does not 
change in [ ).,0 ∞  

Proposition 2.2. Let (H1) holds. Then all solutions to the initial 
value problems (1), (4), and (5) are positive and decreasing, if and only if 
( ) .0>αg  

Proof. Let ( )ruu =  be a positive and decreasing solution of the 
initial value problems (1), (4), and (5), then obviously by Proposition 2.1, 
the only extremum ( ) α=0u  must be positive and by condition ,H1  
( ) .0>αg  

On the other hand, we assume that ( )( ) ( ) 00 >α= gug  and prove that 
( )ru  is positive and decreasing. Set ( )( ) ( )rrug ρ=  for some continuous 

function [ ( )].sup,0: ξ→ρ ∈ξ+ gRR  If ( ) ,00 >u  then by the condition 

( ) .0,H1 >uug  Which implies ( ) ( )( ) ( ) 000 >αα= gugu  yields ( ) .00 >ρ  It 
follows from the continuity of ρ  that ( ) 00 >θρ  for some 00 >θ  in some 
neighborhood of 0. Applying (7), we observe that ( )ru′  is negative in such 
a neighborhood, which implies that ( )ru  is strictly decreasing from ( )αu  
in the immediate neighborhood of 0. We shall use further application of 
(7) to show that ( ) 0<′ ru  for all r. 

If there are two points 1θ  and 2θ  in ( )∞θ ,0  such that ( ) ( ),21 θρ=θρ  

,21 θ≠θ  then (7) gives ( ) ( ) ( ) =′<θ<θ
+
θρ

−=′ 2110
11

1 and,1 rura
rru  

( ) ,1
22

+
θρ

− a
r ,220 r<θ<θ  where 21 rr <  and we have ( ) ( ),21 ruru ′>′  which 

shows ( )ru  is strictly decreasing for all ( ).,0 ∞θ∈r  And finally, if 
( ) ( )21 θρ≠θρ  for .21 θ≠θ  Then ( ) 0>θφ  for all ( ),,0 ∞θ∈θ  which 

implies ( )ru′  does not change sign. This implies that ( ) 0<′ ru  for all 
[ ),,0 ∞θ∈r  therefore ( )ru  is a positive and decreasing function. 

Theorem 2.1. Let u satisfy the initial value problems (1), (4), and (5) 
and the function ( )rv  be given by the integral identity 
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( )
( ) ( ) ( )( )

.0
1

0
a

arar

r

dugrdua
rv

σσσσ−−σσσ
=

∫∫ −

  (8) 

Then ( )rv  satisfies the initial value problem, if and only if 

( ) ,lim
0

α=
↓

rv
r

 

( ) .0lim
0

=′
↓

rv
r

 

Proof. Suppose (8) holds. We shall show that ( ) α=↓ rvr 0lim  and 

( ) .0lim 0 =′↓ rvr  We observe that by the initial condition (5) ( )ru  has one-

sided derivative at the origin, hence it is continuous at the origin; so that 
( ) ( ) .0lim 0 α==↓ urur  Further, we may take the limit of (1) to deduce 

( ) ( ) ;1lim 0 +
α−=′′↓ a

grur  so that ( ) ( ( ) +′′−=′ ↓↓ rua
rru rr 00 limlim ( )) .0=ug  

Hence, using (8), 

( )
( ) ( ) ( )( )


















σσσσ−−σσσ

=
∫∫ −

↓↓ a

arar

rr r

dugrdua
rv 0

1
0

00
limlim  

{ ( ) ( ) ( )( ) }


















σσσσ−−σσσ

=
−

−

↓

∫∫
1
0

1
0

0
lim a

arar

r ar

dugrduadr
d

 

 (by L’Hopital’s rule) 

( ) ( )( )


















σσσ−

=
−

−

↓

∫
1

0
1

0
lim a

ara

r ar

dugruar
 (by L’Hopital’s rule) 

( ) ( )( )








−




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=

−↓−

−
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( ) ( )( )








−=

↓↓ 2

2

00
limlim

a
rugrru

rr
 

( )ru
r 0
lim
↓

=  

( ) ( ) .0lim 0 α==⇒ ↓ urvr  

By differentiating (8) and taking limits, we similarly deduce 

( ) ( ) .0011lim
2

0
=′








+

−=′
↓

ua
arv

r
 

On the other hand, we assume that ( ) α=↓ rvr 0lim  and ( ) ;0lim 0 =↓ rvr  

and prove that (8) gives a solution to the initial value problems (1), (4), 
and (5). It suffices to show that ( )rv  satisfies the differential equation (1). 
We claim that v is identically equal to u. To proof this claim, we proceed 
as follows: 

( ) ( ) ( ) ( )( ) σσσσ−−=σσσ− ∫∫ − dugrduarvr arara
0

1
0

 

( ( ) ( )) ( ) ( )( ) µσσσ−=σσ′σ+−⇒ ∫∫∫
µ

ddugdururrvr araraa
000

 

( ( ) ( )) ( ) ( )( ) σσσ−=′+−⇒ ∫ dugrurrurrvrdr
d araaa

0
 

( ( ) ( )) [ ( )] ( )( )rugrrurdr
drurrvr

dr
d aaaa −=′+−⇒ 2

2
 

( ( ) ( )) ,02

2
=−⇒ rurrvr

dr
d aa  (since u solves (1)).  (9) 

Integrating (9), we get 

( ( )) ( ) ( ) ==−+′−′=′− − buvaruvruvr aaa 1  constant;  (10) 

from whence taking limits as ,0↓r  we deduce that .0=b  Integrating 
(10), we get 
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( ) ,cuvra =−   (11) 

from whence we also deduce that ,0=c  after taken limits as .0↓r  
Thus, v is identically equal to u. 

3. Main Results 

The results obtained in Section 2 assumed existence of solution to the 
initial value problem; i.e., their validity is consequent upon existence of 
solutions. The next step is to establish existence of solution; and it 
involves showing that (8) induces a compact operator T from the space 
( )RR ,+C  into itself, the fixed point of which is ( ).ru  We shall show that 

the image of T on any restriction of elements of ( )RR,C  to [ ]( )R,,0 τC  is 
relatively compact in ( )., RR+C  For relative compactness, we require 
that sequences in [ ]( )[ ]R,,0 τCT  be equibounded and equicontinuous 
(Yosida [14]). 

Theorem 3.1. Let g satisfy the conditions (H1)-(H3), then the initial 
value problem arising from Equations (1), (4), and (5) have a solution. 

Proof. A little modification on 

( ) ( ) ( ) ( )( ) ,
0

1
0

σσσσ−−σσσ= ∫∫ − dugrduarur arara  

yields the convolution operator; 

( ) ( ) ( ) ( ) ,1
00

σ





σ
+

σ
σσ−−σ

σ
σ−+= ∫∫ dwawgrdwrawT a

arr
 

that is, ( ) ( )wrgLwrgLTw ,, 2211 −=  by setting ( ) r
awwrg =,1  and 

( ) ( ) ( ),,, 12 wrag
r
wgrwrg a

a +=  where ( ) ( ).rurrw a=  

We desire to apply Schauder-Tychonoff theorem Theorem 1.1 to show 
that w is a fixed point of T. Any bounded sequence of functions 
{ } 0Cn ⊆σ  is equibounded and equicontinuous on [ )α,0  and by Arzela-
Ascoli theorem such sequences are relatively compact. Now, since T is a 
continuous operator, it maps relatively compact sets into relatively 
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compact sets, therefore we infer that T is a compact operator so T maps 
every closed convex set K into itself. Further, (see, for example, 
Corduneanu [4] and O’regan [11]) arbitrary restrictions above the image 
of T on ( )RR ,+C  is relatively compact. Therefore, T induces a compact 
operator T from the space ( )RR ,+C  of continuous functions into itself 

the fixed point of which is ( ),rura  since the image of T on any restriction 
of elements of ( )RR,C  to [ ]( )R,,0 τC  is relatively compact in ( )., RR+C  

Therefore by Schauder-Tychonoff theorem, ( )rura  is a fixed point of T 
given by: 

( ) ( ) ( ) ( ) ( ) [ ( ) ] ,1 1
0

1
0

σσ+σσ−−σσσσ−+= −− ∫∫ duaugrduraruTr aarara  

and the solution ( )ru  of the initial value problem exists and is well 

defined by ( ) ( ( )) ( ) .a

a

r
rruTrru =  

Proposition 3.1. Let g be a continuous function satisfying ( ) ,0>ξξg  

for 0≠ξ  and ( ) .0;00 α≤ξ≤=g  Then if ( )ru  is a strictly decreasing 

positive function with values between zero and α  satisfying the initial 
value problem: 

( ) ( ) ( ),2

2
ugrdr

du
r
ar

dr
ud −=+  

  ( ) ,0 α=u  

     ( ) .00 =dr
du  

Then ( )( )rug  is positive and strictly decreasing with increasing r. 

Proof. That g is positive follows directly from the condition (H1); 
( ) ( )( ) 0>rugru  and Proposition 2.2. To prove that ( )( )rug  is strictly 

decreasing with r, we divide the condition (H3) by the positive function 
( )tu  to obtain ( )( ) ( )rkurug ≤≤0  and observe that ( )( )rug  is strictly 

decreasing with increasing r. 



ON UNIQUENESS OF POSITIVE RADIAL SOLUTIONS … 237

Theorem 3.2. The solution to the problems (1), (4), and (5) are unique 
for all continuous nonlinearities ( )( )tug  satisfying (H1)-(H3). 

Proof. Let ( )ru  and ( )rv  be two distinct solutions of the problem. 

Since both solutions are, by Proposition 3.1, positive and strictly 
decreasing, there exists intervals in [ )∞,0  such that either ( ) ( )rvru <  or 

( ) ( ).rvru >  We assume, without loss of generality, that ( ) ( )rvru <  in 

some interval [ ] [ ).,0,0 0 ∞⊂r  If ( )ru  and ( )rv  are such two distinct 

solutions of the initial value problem, then for all [ ],,0 0rr ∈  we have 

that; 

( ) ( )( ) ( ) ( ) ( )[ ] σσ−σσσ−+=− −∫ dvurarvrur ara 1
0

1  

( ) [ ( )( ) ( ( ))[ ] ( ) ( )[ ]] .1
0

σσ−σσ+σ−σσσ−− −∫ dvuvgugr aar
 

Setting ( ) ( ) ( )rzrvru =−  and ( )( ) ( )( ) ( ),rbrvgrug =−  we consider the 

initial value problem 

( ),2

2
rbdr

dz
r
a

dr
zd −−=  

( ) ,00 =z  

( ) ,00 =′z  

which must have in the interval [ ],,0 0r  the solution ( ) =rzra  

( ) ( ) ( ) [ ( ) ( )] .1 1
0

1
0

σσσ+σσσ−−σσσσ−+ −− ∫∫ dzbrdzra aarar
 Now, in 

Proposition 2.2, it is shown that ( )ru  and ( )rv  are positive and strictly 

decreasing solutions. This means that ( )rz  must be bounded since 

( ) 0lim 0 =→ rzrr  and ( ) .00 =z  This implies that there exists a point 1r  

in ( )0,0 r  with ( ) ( ).11 rvru ′=′  We shall end the proof by showing that this 

contradicts the assumption that; ( ) ( )rvru <  in [ ].,0 0r  
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If ( ) ,01 =′ rz  we must have ( ) ( ) ,011 =′−′ rvru  which yields 

( ) ( ) ( ) [ ( )( ) ( )( )] σσ−σσσ−−=′−⇒ ∫ dvgugrarvur ara 1

0
11  

( ) ( )( ) ( ) ( )( ) σσσσ−=σσσσ−⇒ ∫∫ dvgradugra arar 11

00
 

( ( )) ( ) ( ( )) ( ) ,
11

00
σσσ−ϑ=σσσ−ϑ⇒ ∫∫ drvgdrug ar

v
ar

u  

(by mean value theorem) 

where uϑ  and vϑ  are distinct points in the interval ( ).,0 0r  By 
Proposition 3.1, g is strictly decreasing and so ( )( ) ( )( ),rvgrug <  whenever 
( ) ( ).rvru <  It follows from above that, the equation ( ( )) ( ( ))vu vgug ϑ=ϑ  

gives ( ) ( )vu vu ϑ=ϑ  (where ( ) [ ]00 ,0,0, rrvu ⊂∈ϑϑ ) yields ( ) =ϑuu  
( ).vv ϑ  This contradicts the fact that ( ) ( )rvru <  for all [ ) ⊂∈ 1,0 rr  
[ ]0,0 r  for some ( ).,0 01 rr ∈  

Further, suppose ( ) ( ) ,rrvru ∀<  we observe that in the limit as 
( ) 000 →∞→ rur  and so we must have ( )∞∈ϑϑ ,0, vu  and by the 

argument above, we obtain ( ) ( ),vu vu ϑ=ϑ  which contradicts the 
assumption that ( ) ( ) ( ).,0 ∞∈∀< rrvru  Therefore, the solution is unique. 

4. Illustrative Example 

For any integer ,1≥m  consider the initial value problem 

( )











∞≤≤

≤≤−
−≤≤∞−

−=−=+

+

+

+

.1if,

11if,
1if,

:
12

1

12
1

12
2

2

uu

uu
uu

ugdr
du

r
a

dr
ud

m

m

m  (12) 

( ) ,0 α=u   (13) 

( ) .00 =′u   (14) 
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The given non-smooth nonlinearity ( )ug  satisfies the conditions H1-H3, 

so that Theorems 3.1 and 3.2 guarantee the existence of a unique solution 
to the initial value problems (12)-(14). 
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